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Introduction

• ANFIS: Artificial Neuro-Fuzzy Inference Systems
• ANFIS are a class of adaptive networks that are

funcionally equivalent to fuzzy inference systems.
• ANFIS represent Sugeno e Tsukamoto fuzzy

models.
• ANFIS uses a hybrid learning algorithm
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Sugeno Model

• Assume that the fuzzy inference system has two
inputs x and y and one output z.

• A first-order Sugeno fuzzy model has rules as the
following:

• Rule1:
If x is A1 and y is B1, then f1 = p1x+ q1y + r1

• Rule2:
If x is A2 and y is B2, then f2 = p2x+ q2y + r2
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Sugeno Model - I
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ANFIS Architecture
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Layer 1 - I

• Ol,i is the output of the ith node of the layer l.

• Every node i in this layer is an adaptive node with
a node function
O1,i = µAi

(x) for i = 1, 2, or
O1,i = µBi−2

(x) for i = 3, 4

• x (or y) is the input node i and Ai (or Bi−2) is a
linguistic label associated with this node

• Therefore O1,i is the membership grade of a fuzzy
set (A1, A2, B1, B2).
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Layer 1 - II

• Typical membership function:

µA(x) =
1

1 + |x−ci
ai

|2bi

• ai, bi, ci is the parameter set.
• Parameters are referred to as premise parameters .
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Layer 2

• Every node in this layer is a fixed node labeled
Prod.

• The output is the product of all the incoming
signals.

• O2,i = wi = µAi
(x) · µBi

(y), i = 1, 2

• Each node represents the fire strength of the rule
• Any other T-norm operator that perform the AND

operator can be used

Fuzzy Logic-ANFIS – p. 9/53



Layer 3

• Every node in this layer is a fixed node labeled
Norm.

• The ith node calculates the ratio of the ith rulet’s
firing strenght to the sum of all rulet’s firing
strengths.

• O3,i = wi =
wi

w1+w2

, i = 1, 2

• Outputs are called normalized firing strengths .
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Layer 4

• Every node i in this layer is an adaptive node with
a node function:

O4,1 = wifi = wi(px + qiy + ri)

• wi is the normalized firing strenght from layer 3.
• {pi, qi, ri} is the parameter set of this node.
• These are referred to as consequent parameters .
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Layer 5

• The single node in this layer is a fixed node
labeled sum, which computes the overall output as
the summation of all incoming signals:

• overall output = O5,1 =
∑

i wifi =
∑

i
wifi∑
i
wi
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Alternative Structures

• There are other structures
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Learning Algorithm
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Hybrid Learning Algorithm - I

• The ANFIS can be trained by a hybrid learning
algorithm presented by Jang in the chapter 8 of
the book.

• In the forward pass the algorithm uses
least-squares method to identify the consequent
parameters on the layer 4.

• In the backward pass the errors are propagated
backward and the premise parameters are
updated by gradient descent.
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Hybrid Learning Algorithm - II

Forward Pass Backward Pass

Premise Parameters Fixed Gradient Descent

Consequent Parameters Least-squares estimator Fixed

Signals Node outputs Error signals

Two passes in the hybrid learning algorithm for ANFIS.
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Basic Learning Rule Definitions

• Suppose that an adptive network has L layers and
the kth layer has #(k) nodes.

• We can denote the node in the ith position of the
kth layer by (k, i).

• The node function is denoted by Ok
i .

• Since the node output depends on its incoming
signals and its parameter set (a, b, c), we have

Ok
i = Ok

i (O
k−1
i , . . . , Ok−1

#(k−1)
, a, b, c)

• Notice that Ok
i is used as both node output and

node function.
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Error Measure

• Assume that a training data set has P entries.

• The error measure for the pth entry can be defined as the sum of
the squared error

Ep =

#(L)∑

m=1

(Tm,p −OL
m,p)

2

• Tm,p is the mth component of the pth target.

• OL
m,p is the mth component the actual output vector.

• The overall error is

E =

P∑

p=1

Ep
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Error Rate for each output

• In order to implement the gradient descent in E we calculate the
error rate ∂E

∂O
for the pth training data for each node output O.

• The error rate for the output note at (L, i) is

∂Ep

∂OL
i,p

= −2(Ti,p −OL
i,p) (1)

• For the internal node at (k, i), the error rate can be derived by the
chain rule:

∂Ep

∂Ok
i,p

=

#(k+1)∑

m=1

∂Ep

∂Ok+1
m,p

∂Ok+1
m,p

∂Ok
i,p

, (2)

where 1 ≤ k ≤ L− 1

• The error rate of an internal node is a linear combination of the
error rates of the nodes in the next layer.
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Error Rate for each parameter

• Consider α one of the parameters.

• Therefore
∂Ep

∂α
=

∑

O∗∈S

∂Ep

∂O∗

∂O∗

∂α
, (3)

where S is the set of nodes whose outputs depend on α

• The derivative of the overall error with respect to α is

∂E

∂α
=

P∑

p=1

∂Ep

∂α
, (4)

• The update formula for α is

∆α = η
∂E

∂α
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Learning Paradigms

• If the parameters are to be updated after each
input-output pair (on-line training) then the update
formula is:

∂Ep

∂α
=

∑

O∗∈S

∂Ep

∂O∗

∂O∗

∂α
(5)

• With the batch learning (off-line learning) the
update formula is based on the derivative of the
overall error with respect to α:

∂E

∂α
=

P∑

p=1

∂Ep

∂α
, (6)
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Gradient Problems

• The method is slow.
• It is likely to be trapped in local minima.
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Hybrid Learning Rule
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Hybrid Learning Rule

• Combines:
• the gradient rule;
• the least squares estimate.
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Definitions

• Considere that the adptive network has only one output.

• output = F (I, S)

• I is the vector of input variables.

• S is the set of parameters.

• F is the function implemented by the ANFIS.

• If there exists a function H such that the composite function H ◦ F

is linear in some elements of S then these elements can be
identified by LSM.
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Continuing Definitions
• More formally, if the parameter set S can be decomposed into two

sets S = S1 ⊕ S2 (⊕ direct sum), such that H ◦ F is linear in the
elements of S2

• then applying H to output = F (I, S) we have

H(output) = H ◦ F (I, S) (7)

which is linear in the elements of S2.

• Given values of elements of S1, it is possible to plug P training
data in equation 7.

• As a result we obtain a matrix equation Aθ = y where θ is the
unknown vector whose elements are parameters in S2.

• This is the standard linear least-square problem.
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Combining LSE and gradient descent
- forward pass

• In batch mode, each epoch is composed of a
forward pass and a backward pass.

• In the forward pass an input vector is presented
and the output is calculated creating a row in the
matrices A and y.

• The process is repeated for all training data and
the parameters S2 are identified by BLS or RLS.

• After S2 is identified the error for each pair is
computed.
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Combining LSE and gradient descent
- backward pass

• The derivative of the error measure with respect to each node
output propagate from the output toward the input.

• The derivatives are:

∂Ep

∂OL
i,p

= −2(Ti,p −OL
i,p)

∂Ep

∂Ok
i,p

=

#(k+1)∑

m=1

∂Ep

∂Ok+1
m,p

∂Ok+1
m,p

∂Ok
i,p

• The parameters in S2 are updated by the gradient method

∆α = −η
∂E

∂α
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Universal Aproximator
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ANFIS is a Universal Aproximator

• When the number of rules is not restricted, a
zero-order Sugeno model has unlimited
approximation power for matching well any
nonlinear function arbitrarily on a compact set.

• This can be proved using the Stone-Weierstrass
theorem.

• Let domain D be a compact space of N
dimensions, and let F be a set of continuous
real-valued functions on D satisfying the following
criteria:
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Stone-Weierstrauss theorem - I

Indentity function: The constant f(x) = 1 is in F .

Separability: For any two points x1 6= x2 in D, there is an
f in F such that f(x1) 6= f(x2).

Algebraic closure: If f and g are any two functions in F ,
then fg and af + bg are in F for any two real
numbers a and b.
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Stone-Weierstrauss theorem - II

• Then F is dense on C(D), the set of continuous
real-valued functions on D.

• For any ǫ > 0 and any function g in C(D), there is a
function f in F such that |g(x)− f(x)| < ǫ for all
x ∈ D.

• The ANFIS satisfies all these requirements.
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Stone-Weierstrauss theorem - III

• In applications of fuzzy inference systems, the
domain is almost always compact.

• It is possible, applying this theorem to prove the
universal approximation power of the zero-order
Sugeno model.
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Indentity Function

• Indentity function: The constant f(x) = 1 is in F .
• The first hypothesis requires that our fuzzy

inference system be able to compute the identity
function f(x) = 1.

• An obvious solution is to set the consequence part
of each rule equal to one.

• A fuzzy inference system with only one rule is able
to compute the identity function.
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Separability

• Separability: For any two points x1 6= x2 in D,
there is an f in F such that f(x1) 6= f(x2).

• The second hypothesis requires that our fuzzy
inference system be able to compute functions that
have different values for different points.

• This is achievable by any fuzzy inference system
with appropriate parameters.
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Algebraic Closure - Addition I

• Algebraic closure addition: If f and g are any
two functions in F , then af + bg are in F for any two
real numbers a and b.

• Suppose that we have two fuzzy inference
systems S and Ŝ; each of them has two rules.

• The final output of each system is specified as

S : z =
w1f1 + w2f2

w1 + w2

Ŝ : ẑ =
ŵ1f1 + ŵ2f2

ŵ1 + ŵ2
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Algebraic Closure - Addition II

• sum of z and ẑ is:

az + bẑ = a
w1f1 + w2f2

w1 + w2

+ b
ŵ1f1 + ŵ2f2

ŵ1 + ŵ2

=
w1ŵ1(af1 + bf̂1) + w1ŵ2(af1 + bf̂2) + w2ŵ1(af2 + bf̂1) + w2ŵ2(af2 + bf̂2)

w1ŵ1 + w1ŵ2 + w2ŵ1 + w2ŵ2
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Algebraic Closure - Addition III

• Therefore, it is possible to construct a four-rule
inference system that computes az + bẑ.

• The firing strength of each rule is given by
wiŵj (i, j = 1 or 2)

• The output of each rule is given by
afi + bf̂j (i, j = 1 or 2)
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Algebraic Closure - Multiplication I

• Algebraic closure multiplication: If f and g are
any two functions in F , then fg are in F .

• product of z and ẑ is:

zẑ =
w1ŵ1f1f̂1 + w1ŵ2f1f̂2 + w2ŵ1f2f̂1 + w2ŵ2f2f̂2

w1ŵ1 + w1ŵ2 + w2ŵ1 + w2ŵ2

• Therefore, it is possible to construct a four-rule
inference system that computes zẑ.

• The firing strength and output of each rule is
defined by wiŵj and fif̂j (i, j = 1 or 2) respectively.
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Conclusion

• ANFIS architectures that compute zẑ and az + bẑ

are of the same class as those of S and Ŝ if and
only if the membership functions used are
invariant under multiplication.

• The Gaussian membership functions satisfy this
property.

• µAi
= kie

[−(
x−ci

ai
)2]
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Anfis and Matlab
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Matlab

• It is possible to use a graphics user interface
• Command anfisedit.

• It is possible to use the command line interface or
m-file programs.

• There are functions to generate, train, test and use
these systems.
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ANFIS gui
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Applying

• Initializing
• Training
• Testing
• Using
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Initializing - GENFIS1 - 1

• FIS = GENFIS1(DATA) generates a
single-output Sugeno-type fuzzy inference system
(FIS) using a grid partition on the data (no
clustering).

• FIS is used to provide initial conditions for
posterior ANFIS training.

• DATA is a matrix with N+1 columns where the first
N columns contain data for each FIS input, and
the last column contains the output data.
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Initializing - GENFIS1 - 2

• By default GENFIS1 uses two ’gbellmf’ type
membership functions for each input.

• Each rule generated has one output membership
function, which is of type ’linear’ by default.

• It is possible to define these parameters using
FIS = GENFIS1(DATA, NUMMFS, INPUTMF,
OUTPUTMF)

• fis = genfis1(data, [3 7],
char(’pimf’, ’trimf’));
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Initializing - GENFIS1 - 3

data = [rand(10,1) 10*rand(10,1)-5 rand(10,1)];

fis = genfis1(data, [3 7], char(’pimf’,’trimf’));

[x,mf] = plotmf(fis,’input’,1);

subplot(2,1,1), plot(x,mf);

xlabel(’input 1 (pimf)’);

[x,mf] = plotmf(fis,’input’,2);

subplot(2,1,2), plot(x,mf);

xlabel(’input 2 (trimf)’);
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Initializing - GENFIS1 - 4
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Initializing - GENFIS2

• GENFIS2 generates a Sugeno-type FIS using
subtractive clustering.

• GENFIS2 extracts a set of rules that models the
data behavior.

• The rule extraction method first determines the
number of rules and antecedent membership
functions and then uses linear least squares
estimation to determine each rule’s consequent
equations.
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Training

• ANFIS uses a hybrid learning algorithm to identify
the membership function parameters of
single-output, Sugeno type fuzzy inference
systems (FIS).

• There are many ways of using this function.
• Some examples:

• [FIS,ERROR] = ANFIS(TRNDATA)
• [FIS,ERROR] =
ANFIS(TRNDATA,INITFIS)
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Using

• EVALFIS evaluates a FIS.
• Y = EVALFIS(U,FIS) simulates the Fuzzy

Inference System FIS for the input data U and
returns the output data Y.
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Example

• run exemplo06_03.m
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The End
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